If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14n^2+3n-5=0
a = 14; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·14·(-5)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-17}{2*14}=\frac{-20}{28} =-5/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+17}{2*14}=\frac{14}{28} =1/2 $
| 0.8x+0.2x-9+3=-2x | | 6xx4=48 | | 8x2=-11×-7 | | 4y+7=5+2=4y | | .75x+0.1x=x-7.5 | | 7a+7a+6=8 | | 360/(7200+9x)=0 | | 360/7200+9x=0 | | 7200+9x=360 | | 2+x+3+2+x+3=28 | | 5+2x=3×5-x | | x-3/2=2 | | 36^x-2=216^2x | | 5y+4=4y-7 | | n/4+5=13 | | y+1/6=-2/3 | | 85/119=45/x | | 3=-7/9+u | | 62c+23=8(c-19) | | 62c+23=8(c-19 | | (5-v)(4v+7)=0 | | -6v+10=8(v-4) | | 4(u+8)=7u+38 | | 5/9=30r | | -7u+5(u+6)=16 | | 6(w-8)-2w=-8 | | (2/7)x+(1/2)x+6=x | | 2x-5+x-5/10=8.3 | | 4^5x+2=5^x | | 8x-2=3-5x | | 7/3-4/3x=7 | | 2y^2+17y+26=0 |